The ‘faecal’ bank…

Welcome to The Gene Gym on SciLogs.com.

I’m going to take great license to wander around numerous areas that overlap, nudge, cajole and nestle up against the main theme of my blog, which is of course bug and drugs.

So firstly, a brain dump:

A colleague and I once – rather drunkenly – planned a letter to The Lancet [a popular medical journal] in which we describe a means by which one might ‘bank’ a sample of ones faecal matter [shit] (comprising a cross-section of a healthy gut microflora), prior to departing on an exotic holiday, or undergoing antibiotic treatment. The premise was that any insult or injury arising from catching a bout of traveller’s Delhi-Belly, or depletion of the gut flora from chemotherapy, could be abated by having your original gut flora restored from your earlier banked sample. The service would naturally be called, the ‘Shit Bank’.

Continue reading “The ‘faecal’ bank…”

Re-awakening enemy sleepers…

The idea of an enemy sleeper agent is a central plot device in many a spy novel or movie, and certainly the idea of going to ground behind enemy lines is not unheard of in many theatres of conflict. The idea in all cases is to remain undetected until re-activated to cause harm behind enemy defences.

The trick to identifying if there are latent sleepers operating is to try and re-activate them and get them to reveal themselves. Cue any number of spy stories about false radio signals or targets to lure sleepers into the open.

Curiously, it is a similar strategy that is being used in novel treatments for infections from two disparate areas of chemotherapy, one in the treatment of HIV and the other the treatment of persistent bacterial infections.

Continue reading “Re-awakening enemy sleepers…”

Where I am quoted not quite correctly….

I was recently called by an editor at NewScientist asking for some background on the field of fitness in bacteria, and particularly the issue of multi-resistant bacteria persisting in the environment (or clinic) in the absence of antibiotic selection. The reason for the question arose due to the upcoming publishing of an interesting paper in PLoS Genetics:

Silva RF, Mendonça SCM, Carvalho LM, Reis AM, Gordo I, et al. 2011 Pervasive Sign Epistasis between Conjugative Plasmids and Drug-Resistance Chromosomal Mutations. PLoS Genet 7(7): e1002181. doi: “10.1371/journal.pgen.1002181 “:http://dx.doi.org/10.1371/journal.pgen.1002181

Following this, I have been quoted in a NewScientist Health News item, and as I don’t feel my response is quite in the context I gave it, I thought I would give a more detailed account. I spoke to NewScientist last Wednesday (the paper in question wasn’t due to be published until the following day), but I was told that in the study the authors had observed that antibiotic resistance can have a positive effect on bacterial fitness, even in the absence of selection. I was asked whether this was a surprise to me, and more generally about research in bacterial fitness. What I perhaps should have done was ask specifically whether the paper was still embargoed and whether I could have more particulars of the study, because I could not have anticipated the particular nature of the study in question.

Continue reading “Where I am quoted not quite correctly….”

No action today, no antibiotics tomorrow…

YOU may have missed the fact that today was a World Health Day devoted to antibiotics; if you hadn’t, then it is, or at least was. In any case, it’s more or less over now and the issue can sink into the din of background noise.

As Frank Swain put it in in his well researched, and typically pithy, Guardian article today:

Health experts have been ringing the alarm over antimicrobial resistance for so long that it seems to have become part of our collective background noise, like the endless rasp of waves on the shore. And like stupid tourists, we sleep in the sun while the tide comes in.

I have to say that a little pithiness is warranted, because if we find ourselves still in this situation in 2021, I’m going to be either, a) A disgruntled cash-strapped senior lecturer / reader / professor with a serious Cassandra complex; b) long since departed from research due to lack of funding; or c) dead, or missing a limb, due to an untreatable bacterial infection, or grieving over the same in a loved one.

I’ve written previously about some of the reasons we don’t have new drugs, and we can keep re-stating these issues til the cows come home, but it doesn’t mean anything will actually change. The broad response of governments following the ReAct meeting in Stockholm last year was more words, then an eerie silence. Similarly, in a meeting of the British Society for Antimicrobial Chemotherapy (BSAC), bylined ‘The Urgent Need’, more words were said amongst people who already familiar with those words, following which there was also been an eerie silence.

Continue reading “No action today, no antibiotics tomorrow…”

Surviving antibiotics…

Killing avoidance strategies

A couple of recent research papers remind me that I promised to talk a little about a phenomenon by which bacteria can avoid being killed by antibiotics, without actually being resistant in the classical sense, i.e. they can’t actually grow in elevated concentrations of the antibiotics they survive, and those cells that do survive give rise to populations that are no more, or less, likely to survive next time.

The first paper comes from the lab of Prof. Tony Coates at the Centre for Infection at St. George’s, University of London. Prof. Coates has for a long time been heavily involved in research into the treatment of latent and persistent infections, most notably T.B./tuberculosis. His research team (as indeed are mine) are trying to understand why some antibiotics that kill actively growing bacteria of a particular species have no effect on cells of the same species that aren’t actively growing; almost akin to the bit in Jurassic Park where T. rex kills the lawyer who’s running, but wouldn’t have done had the lawyer stood still §.

One of the reasons for this is that, historically, most drug discovery has been focussed on targeting actively growing cells, but what we are increasingly finding is that persistent infections can be mediated by a recalcitrant population of slow-growing or non-growing cells.

Whilst the idea of targeting non-growing bacteria is not a wholly new idea (you can find a review on the subject by Prof. Coates in my ‘Further reading’), it does seem that together with the report’s first author, Dr Yanmin Hu, their spin-out company (Helperby Therapeutics) has developed a platform and proof of principle drug that is now in trials, demonstrating the utility of such an approach. They have identified an antibiotic compound that has potent anti-Staphylococcal activity, but importantly, acts specifically against non-multiplying cells.

In a second paper, brought to my attention by Ed Yong, the Collins lab in Boston has identified that a sub-population of super-resistant bacteria act in a charitable manner to other members of the colony that are less resistant. Whilst the super-resistant cells could satisfy their own selfishness by merely allowing all their less-resistant siblings to die out, the bacteria in this case have a mutation that maintains their production of indole (a signalling molecule) when normally its production would be shut down on exposure to the antibiotic. When released by the cell, indole stimulates non-resistant cells to enter a state of phenotypic resistance or ‘antibiotic survival’, even though continued-production of indole incurs a fitness cost.

Why might they do this?

Well, for one of the reasons that is very much the subject of my blog, bacterial fitness. As I have mentioned before, antibiotic resistance can have a fitness cost, which means that cells committing themselves to this ‘path of resistance’ may find themselves at a disadvantage come the time when the antibiotic is no longer around. The subject of my research is to document the various ways in which antibiotic resistant Staph. aureus mitigate these fitness costs so that they get to remain resistant and just as competitive as they ever were in the absence of antibiotic. It seems that in the case of the Collins’ lab’s charitable bacteria, they may mitigate the fitness cost of antibiotic resistance at a population level by maintaining the presence of non-resistant cells that can come to the fore once the antibiotic is removed.

“These few drug-resistant mutants, by enhancing the survival capacity of the overall population in stressful environments, may also help to preserve the potential for the population to return to its genetic origins should the stress prove transient. Efforts to monitor and combat antibiotic resistance are complicated by these bet-hedging survival strategies and other forms of bacterial cooperation.”

So what I want to do is briefly introduce the types of ‘antibiotic survival’ strategies seen in bacteria. It goes without saying that future drug discovery that targets the molecular/physiological underpinning for these strategies (once we’ve identified what these are!) will be important for the clinical management of infection.

Resistance or ‘killing avoidance’?

I’ve discussed in a previous post what I might describe as mechanisms of antibiotic resistance, i.e. producing a enzyme that modifies or chews up the antibiotic; or changing the component of the cell so that the antibiotic targeted to that component no longer has any effect, or pumping the antibiotic out of the cell before it does any damage.

It was recognised early on, in the heyday of antibiotics, that penicillin could kill most bacteria in a culture, but could not sterilise a culture. This has been observed with numerous antibiotic compounds, thus at a practical level you cannot achieve a 100% kill with antibiotics. Now this isn’t generally a problem for a healthy individual, as it is at this point the immune system takes over and clears away the remaining cells. However, many people receiving antibiotics aren’t well, they may be immuno-compromised, or suffering from a deep-seated infection. The persistence of a bacterial infection becomes a perfect breeding ground for classical antibiotic resistance, with each resurgence of the infection from surviving cells increasing the probability that resistance may evolve; and thus is thought to play a significant role in the failure of antibacterial treatment.

1. INDIFFERENCE. Bacteria can avoid being killed by being in a stationary phase (non-growing or metabolically inactive). This is actually the default repose of bacteria in the environment, only submitting to bursts of growth in the presence of nutrients. Most current (and old) antibiotics are specific to the particular cell components and processes of actively growing cells, there is no reason to expect that such antibiotics would have any killing effect on cells not engaging in these processes.

2. TOLERANCE. Those antibiotics that do kill bacteria don’t necessarily do so directly; they initiate a series of events, a cascade of physiological responses, which ultimately result in cell death. Unlike indifference, tolerance is not linked to the growth/metabolic state of the bacteria, but instead result from genetic changes that uncouple the killing activity of the drug from its inhibitory activity. In the clinic, tolerance seems to be specific to certain bacteria, and even then only in response to particualr antibiotics targeting the bacteria cell-wall.

3. PERSISTENCE. In a bacterial population there exists a sub-population of ‘persister’, cells that regardless of the growth state of the population as a whole, continue to exist in a stationary or growth-retarded state. It may be that persisters avoid antibiotic killing in the same way that indifferent bacteria do, but whilst there are some antibiotics that can kill indifferent cells, they don’t kill persisters; this suggests that something different is going on in these cells, and there is increasing evidence to suggest that there are defined genetic differences implicated in persistence, including changes within the stress-response pathways, but what these are (and what they do exactly) remains to be seen.

4. BIOFILMS. Finally, and most stubbornly, there is the issue of biofilms. Biofilms are like a condominium (or halls of residence) of bacteria, a structured environment where the bugs are surrounded by a gelatinous matrix of sugar chains and many other macromolecules. They are involved in some 80% of human infections and represent a major cause of antibiotic treatment failure. Within the matrix the bacteria avoid antibiotic killing through indifference and persistence, thought to be brought on by the low oxygen and low nutrient environment; the matrix also provides some protection from certain classes of antibiotics, as well as the immune system. Even if a large number of matrix surface cells are killed off, the matrix structure survives and can be re-populated by the surviving cells. For some bacteria the biofilm environment stimulates them to massively increase their rate of mutation, which can increase the rate at which antibiotic resistance can evolve.

So what do we do?

Well again it comes down to idealism versus pragmatism. The current system of drug discovery is fraught and inefficient enough without an additional burden of esoteric and poorly understood mechanisms of bacterial antibiotic survival. I do think there is some merit in drug discovery targeted at non-growing indifferent bacteria, this is particularly important in the treatment of T.B. The problem is going to be that many of these killing avoidance strategies differ between pathogens and between the particular environment in which they’re found, and also that in the absence of any ongoing preventative treatment, such as potential vaccines, by the time an infection manifests itself the antibiotic survival systems are likely to already be in place.

Other than indifference, biofilms are a system worth addressing in the immediate term. We have amassed a huge amount of data on biofilms, and demonstrated that they are of great clinical importance, thus efforts should be made to increase the number of biofilm busting compounds we have available.

Many people are familiar with antibiotic resistance, but I’m interested to hear (especially from other biologists) how much people knew about such antibiotic survival strategies. Also, as ever, please feel free to ask questions at any level. This (rather long) post barely touches the surface of this subject, there’s plenty more to be said!

^§^ The theory that T. rex would only ‘see’ moving objects is probably a little outdated.

Further reading

As always I will try to find open access material where available, and will update those references that aren’t as and when they do.

_Hu et al. (2010) A New Approach for the Discovery of Antibiotics by Targeting Non-Multiplying Bacteria: A Novel Topical Antibiotic for Staphylococcal Infections. PLoS ONE 5: e11818._
Open access ]

_Coates, A. et al. (2002) The future challenge facing the development of new antimicrobial drugs. Nature Reviews Drug Discovery 1: 895-910._
Free pdf ]

_Lee, H. et al. (2010) Bacterial charity work leads to population-wide resistance. Nature 467, 82-85._
[Sorry, article behind a paywall] – You can read Ed Yong’s post on it though.

Levin, B.R. and Rozen, D.E. (2006) Non-inhertied antibiotic resistance. Nat Rev Microbiol 4: 556-562.
free pdf ]

– A very useful grounding to the subject of phenotypic resistance, as it was understood back in 2006.

Lewis, K. (2010) Persister cells. Annu. Rev. Microbiol. 64: 357-72.
[Sorry, another paywall paper ]

– Good review of bacterial persistence.

Compensating for alien genes…

[This post was restored from a WayBackWhen archive of an older incarnation of mentalindigestions.net]

“FROM the perspective of a bacterium, higher eukaryotes are oversexed, unadventurous and reproduce in an inconvenient way.” So says Pål Johnsen and Bruce Levin in their commentary of today’s article for discussion, and nary a truer word said. Of course, one may state that inconvenient as reproduction may be, bacteria clearly have no sense of fun.

There was once an idea that we could address the problem of antibiotic resistant bacterial strains by removing the ailing antibiotic from clinical use. In the absence of selective pressure it was thought that the evolutionary traits that enable the strain to resist the antibiotic would actually put the strain at a competitive disadvantage compared with a strain that doesn’t have such antibiotic resistance. The proposed cause of this? Fitness costs – these are imposed by a resource-expensive set of mutations, or carriage of alien DNA, that make the resistant strain compete less well once its non-resistant brethren are no longer being killed off by the antibiotic.

However, some years ago now experimental evidence suggested that this is not always the case; it may in fact be often not the case. It is worth mentioning at this point that it has been shown that in some circumstances (alt) the number of infections caused by a particular antibiotic-resistant pathogenic bacterium have become fewer on reduction (or removal) of the antibiotic to which that strain is resistant, but to assume this would be the case with all strains/antibiotics is naïve.

It is true, with few exceptions, that initially both plasmid and chromosomally encoded resistances result in fitness losses. However, when resistance has a cost it is possible for compensatory mutations in a cell to ameliorate these costs, usually without the loss of resistance. The type of compensatory mutations that mitigate the fitness cost of acquiring antibiotic resistance, or any other incoming DNA that encodes potentially useful genes, will depend very much upon the environment in which the bacteria finds itself. These include the availability of resources, i.e. the growth environment of the bacteria, the environment of the genes (mobile or chromosomal), or whether the genes are being selected for by an external factor, such as the presence of antibiotics in the case of resistance genes.

So what sort of ‘nips and tucks’ might a bacterial population undergo in order to maintain a battery of costly genes, but that may provide an ongoing advantage? Well, this is the subject of much ongoing research; one example indicated that, in the absence of selective pressure, costly genes are simply silenced – a molecular mechanism often found in higher organisms that prevents a gene from being ‘switched on’. Thus a reservoir of drug resistance determinants may remain in populations that have compensated for their presence, remaining ‘inactive’ until a selective pressure removes the silencing.

A recent study by Peter Lind (et al.), a grad student working in the lab of Dan Andersson at Uppsala, Sweden, addresses a particularly pertinent question of compensatory mutations: those associated with genes acquired by horizontal gene transfer (HGT). HGT bypasses the slow and haphazard process of evolution (via random mutation, selection and recombination) by offering an opportunity for bacteria to receive fully fledged genes encoding pathogenicity factors (genes that make bacteria better at causing disease) as well as genes that encode resistances to disinfectants and/or antibiotics, amongst others. There is no doubt that such incoming DNA may pose significant fitness costs, so Lind et. al. set out to quantify the nature of compensatory mutations on such incoming DNA.

Continue reading “Compensating for alien genes…”

The grass isn’t always greener…

Research bloggingTHERE you are, stood in a green grocers poring over your favourite variety of apple. Suddenly you catch the scent of something heavenly; a smell not unlike the apple you have in your hand, only better. You abandon your apple and follow the scent to the next aisle where you find more apples of the same variety. They smell superior to the others. You pick one up and are compelled to take a bite; on doing so you realise something – it’s pretty bloody awful. You put down the unpalatable apple and move on to alternative apples.

I could be describing a situation reminiscent of the selectively bred, brightly coloured, sweet smelling fruits that line our supermarket shelves; those that in fact taste like  tasteless facsimiles of the original spots-and-all varieties. In this situation we are being manipulated by the supermarkets, but in nature it may be viruses doing the manipulating.

CMV by RG Milne, Istituto di Fitovirologia Applicata  (http://www.ncbi.nlm.nih.gov/ICTVdb/Images/Milne/cucumsv.htm)
Cucumber Mosaic Virus (CMV)

Viruses are parasites, making use of infected host cells to replicate more virus. Of course, it isn’t enough just to replicate, viruses also need to spread to new cells, and new hosts. Plant viruses are often carried from plant to plant by insects; the insects become known in this context as ‘vectors’. The study of the biology of insect vectors is, as you may imagine, fundamentally important to understanding the transmission of a whole range of parasites (viral, bacterial and protozoan) between plants, or between humans and animals. Of particular interest is how parasites, such as viruses, manipulate their insect vectors by altering the physical properties of the host they infect.

A Penn State based group, headed by Mark Mescher, have been using Cucumber Mosaic Virus (CMV), a known generalist plant pathogen, to study the effect it has on the interaction between cultivated squash plants and aphids (sap sucking bugs). The results of this study are reported by Kerry Mauck et al. in a recent paper.

They show that CMV-infected plants have elevated volatile (readily dispersing in air) emissions that attract aphid vectors. This in itself is not a revelation;  the authors cite two well documented examples of this phenomenon, from Potato leaf roll virus (PLRV) and Barley yellow dwarf virus (BYDV), where infected plants release volatiles that attract aphids. However, these other viruses employ a different method of transmission to CMV, and the main thrust of this paper is to identify how the mode of transmission modifies the host-insect interaction.

Continue reading “The grass isn’t always greener…”